Approximation d'une courbe par la méthode d'Euler.

Problème:

f est une fonction définie sur un intervalle I, $x_0 \in I$ et $y_0 \in \mathbb{R}$.

On cherche une fonction F, dérivable sur I, telle que F'(x) = f(x) pour tout $x \in I$ et $F(x_0) = y_0$.

Ce problème sera posé en d'autres termes en classe terminale S:

Déterminer la primitive F de f sur I telle que $F(x_0) = y_0$.

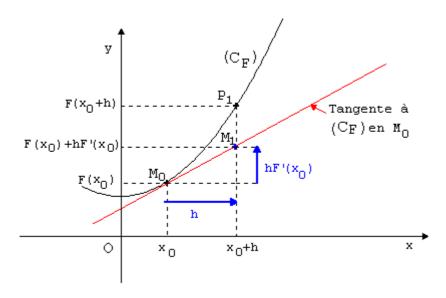
Résoudre sur I l'équation différentielle F' = f avec la condition initiale : $F(x_0) = y_0$.

Lorsqu'on ne peut trouver une formule explicite pour F(x), la méthode d'Euler permet de tracer une courbe approchée de celle de F.

Propriété utilisée :

Si F est une fonction dérivable sur un intervalle I et $x_0 \in I$.,

Alors, pour tout réel h non nul et proche de 0 tel que $x_0 + h \in I$, on $a : F(x_0 + h) \approx F(x_0) + h F'(x_0)$.



Principe de la méthode :

On place le point $M_0(x_0; y_0)$ qui est un point exact de la courbe inconnue (C) de F.

On choisit un réel h non nul, très proche de 0.

On pose : $x_1 = x_0 + h$, $x_2 = x_1 + h$, ..., $x_n = x_{n-1} + h$ (pas h)

On calcule, à l'aide de la propriété citée plus haut, une valeur approchée y_1 de $F(x_1)$, y_2 de $F(x_2)$, y_n de $F(x_n)$.

F étant dérivable en x_0 , on a donc : $F(x_0 + h) \approx F(x_0) + h$ F' (x_0) c'est à dire : $F(x_1) \approx y_0 + h$ f (x_0) .

En posant : $y_1 = y_0 + h f(x_0)$, on obtient : $F(x_1) \approx y_1$.

F étant dérivable en x_1 , on a donc : $F(x_1 + h) \approx F(x_1) + h F'(x_1)$ c'est à dire : $F(x_2) \approx y_1 + h f(x_1)$.

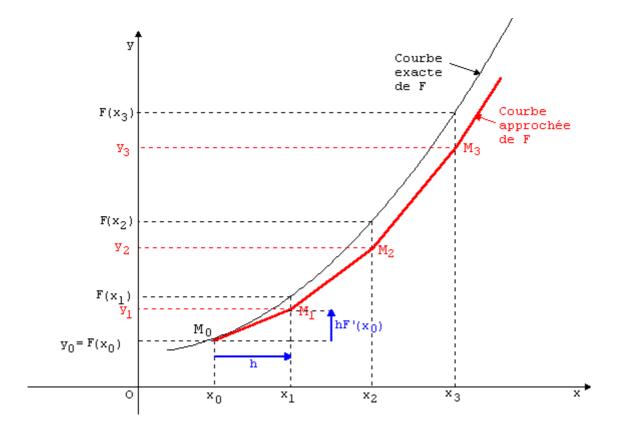
En posant : $y_2 = y_1 + h f(x_1)$, on obtient : $F(x_2) \approx y_2$.

Et ainsi de suite ...

On place ensuite les points $M_1(x_1; y_1)$, $M_2(x_2; y_2)$, ..., $M_n(x_n; y_n)$.

Pour h très proche de 0, la courbe constituée des segments $[M_0M_1]$, $[M_1M_2]$, ..., $[M_{n-1}M_n]$ approche la courbe exacte (C) de F. Plus h est proche de 0, plus cette approximation est bonne.

Cette courbe formée de segments de droite, est la représentation graphique d'une fonction affine par intervalles.



Exemple 1:

Utilisons un tableur pour tracer une courbe approchée sur l'intervalle [0; 3] de la fonction F définie sur **R** par :

$$F'(x) = \frac{1}{1+x^2}$$
 avec la condition initiale : $F(0) = 0$.

La suite des points $M_n(x_n; y_n)$ a pour coordonnées :

$$x_0 = 0$$
 et $x_n = x_{n-1} + h$

$$y_0 = 0$$
 et $y_n = y_{n-1} + \frac{h}{1 + (x_{n-1})^2}$

Calculs à l'aide du tableur d'Open Office ou Excel :

Sur la première ligne, entrer les valeurs initiales.

Sur la seconde ligne, écrire les formules ci-dessus en utilisant la référence des cellules concernées.

Étendre ces formules vers le bas à l'aide de la poignée de recopie, jusqu'à faire afficher la valeur finale 3 pour x_n . Ici la solution F est connue (étudiée à bac +1): c'est la fonction « arctangente » , notée atan par les tableurs et tan^{-1} par la plupart des calculatrices scientifiques. On peut donc calculer l'ordonnée exacte des points d'abscisse x_n (colonne $arctan(x_n)$), l'erreur absolue et l'erreur relative (en %) commise dans l'approximation.

Les formules apparaissent dans la copie d'écran ci-dessous :

	Α	В	С	D	Е	F
1	Pas h:	0,1				
2	n	xn	y _n	Arctan(x _n)	Erreur absolue	Erreur relative
3	0	0	0	=ATAN(B3)	0	0,00%
4	=A3+1	=B3+B\$1	=C3+B\$1/(1+B3^2)	=ATAN(B4)	=D4-C4	=E4/C4
5	=A4+1	=B4+B\$1	=C4+B\$1/(1+B4^2)	=ATAN(B5)	=D5-C5	=E5/C5
6	=A5+1	=B5+B\$1	=C5+B\$1/(1+B5^2)	=ATAN(B6)	=D6-C6	=E6/C6
7	=A6+1	=B6+B\$1	=C6+B\$1/(1+B6^2)	=ATAN(B7)	=D7-C7	=E7/C7
8	=A7+1	=B7+B\$1	=C7+B\$1/(1+B7^2)	=ATAN(B8)	=D8-C8	=E8/C8
9	=A8+1	=B8+B\$1	=C8+B\$1/(1+B8^2)	=ATAN(B9)	=D9-C9	=E9/C9

Le fichier classeur open office correspondant est téléchargeable sur mon site. Le lien est : http://math.sicard.free.fr/1S/derivation/arctan.ods .

Exemple 2:

Utilisons un tableur pour tracer une courbe approchée sur l'intervalle [0; 2] de la fonction F définie sur \mathbb{R} par : F'(x) = F(x) avec la condition initiale : F(0) = 1.

La suite des points $M_n(x_n; y_n)$ a pour coordonnées :

$$x_0 = 0$$
 et $x_n = x_{n-1} + h$

$$y_0 = 1$$
 et $y_n = y_{n-1} + h y_{n-1}$.

Calculs à l'aide du tableur d'Open Office ou Excel :

Sur la première ligne, entrer les valeurs initiales.

Sur la seconde ligne, écrire les formules ci-dessus en utilisant la référence des cellules concernées.

Étendre ces formules vers le bas à l'aide de la poignée de recopie, jusqu'à faire afficher la valeur finale 2 pour x_n . Ici la solution F est connue (étudiée en TS) : c'est la fonction « exponentielle » , notée exp par le tableur et e^x par les calculatrices scientifiques. On peut donc calculer l'ordonnée exacte des points d'abscisse x_n (colonne $exp(x_n)$) et l'erreur relative commise dans l'approximation.

Les formules apparaissent dans la copie d'écran ci-dessous :

P	paranssent dans la copie a ceran el dessous.							
		Α	В	С	D	Ε	F	
1	1	Pas h:	0,1					
2	2	n	<u>xn</u>	Υ _n	$Exp(\bar{x}^{\bar{b}})$	Erreur absolue	Erreur relative	
3	3	0	0	1	=EXP(B3)	0	0,00%	
-	4	=A3+1	=B3+B\$1	=C3+B\$1*C3	=EXP(B4)	=D4-C4	=E4/C4	
ć	5	=A4+1	=B4+B\$1	=C4+B\$1*C4	=EXP(B5)	=D5-C5	=E5/C5	
- 6	6	=A5+1	=B5+B\$1	=C5+B\$1*C5	=EXP(B6)	=D6-C6	=E6/C6	
7	7	=A6+1	=B6+B\$1	=C6+B\$1*C6	=EXP(B7)	=D7-C7	=E7/C7	
8	В	=A7+1	=B7+B\$1	=C7+B\$1*C7	=EXP(B8)	=D8-C8	=E8/C8	
9	9	=A8+1	=B8+B\$1	=C8+B\$1*C8	=EXP(B9)	=D9-C9	=E9/C9	

Le fichier classeur open office correspondant est téléchargeable sur mon site. Le lien est : http://math.sicard.free.fr/1S/derivation/exp.ods .

Exemple 3:

Utilisons un tableur pour tracer une courbe approchée sur l'intervalle [1; 4] de la fonction F définie sur \mathbb{R}^+ par :

$$F'(x) = \sqrt{x}$$
 avec la condition initiale : $F(1) = \frac{2}{3}$.

La suite des points $M_n(x_n; y_n)$ a pour coordonnées :

$$x_0 = 1$$
 et $x_n = x_{n-1} + h$

$$y_0 = \frac{2}{3}$$
 et $y_n = y_{n-1} + h\sqrt{x_{n-1}}$

Calculs à l'aide du tableur d'Open Office ou Excel :

Sur la première ligne, entrer les valeurs initiales.

Sur la seconde ligne, écrire les formules ci-dessus en utilisant la référence des cellules concernées.

Étendre ces formules vers le bas à l'aide de la poignée de recopie, jusqu'à faire afficher la valeur finale 4 pour x_n.

Ici la solution F est connue. Vous pouvez vérifier en la dérivant que $F(x) = \frac{2}{3}x\sqrt{x}$. On peut donc calculer

l'ordonnée exacte des points d'abscisse x_n (colonne $F(x_n)$), l'erreur absolue et l'erreur relative (en %) commise dans l'approximation.

Les formules apparaissent dans la copie d'écran ci-dessous :

	А	В	С	D	Е	F
1	Pas h:	0,1				
2	n	<u>xn</u>	<mark>У</mark> ू	۲(پر ^۳)	Erreur absolue	Erreur relative
3	0	1	=2/3	=(2/3)*B3*RACINE(B3)	0	0,00%
4	=A3+1	=B3+B\$1	=C3+B\$1*RACINE(B3)	=(2/3)*B4*RACINE(B4)	=D4-C4	=E4/D4
5	=A4+1	=B4+B\$1	=C4+B\$1*RACINE(B4)	=(2/3)*B5*RACINE(B5)	=D5-C5	=E5/D5
6	=A5+1	=B5+B\$1	=C5+B\$1*RACINE(B5)	=(2/3)*B6*RACINE(B6)	=D6-C6	=E6/D6
7	=A6+1	=B6+B\$1	=C6+B\$1*RACINE(B6)	=(2/3)*B7*RACINE(B7)	=D7-C7	=E7/D7
8	=A7+1	=B7+B\$1	=C7+B\$1*RACINE(B7)	=(2/3)*B8*RACINE(B8)	=D8-C8	=E8/D8
9	=A8+1	=B8+B\$1	=C8+B\$1*RACINE(B8)	=(2/3)*B9*RACINE(B9)	=D9-C9	=E9/D9

Le fichier classeur open office correspondant est téléchargeable sur mon site. Le lien est :

http://math.sicard.free.fr/1S/derivation/racine.ods

Exemple 4:

Utilisons un tableur pour tracer une courbe approchée sur l'intervalle [1; 3] de la fonction F définie sur \mathbb{R}^{+*} par :

$$F'(x) = \frac{1}{x}$$
 avec la condition initiale : $F(1) = 0$.

La suite des points $M_n(x_n; y_n)$ a pour coordonnées :

$$x_0 = 1$$
 et $x_n = x_{n-1} + h$

$$y_0 = 0 \text{ et } y_n = y_{n-1} + \frac{h}{y_{n-1}}.$$

Calculs à l'aide du tableur d'Open Office ou Excel:

Sur la première ligne, entrer les valeurs initiales.

Sur la seconde ligne, écrire les formules ci-dessus en utilisant la référence des cellules concernées.

Étendre ces formules vers le bas à l'aide de la poignée de recopie, jusqu'à faire afficher la valeur finale 3 pour x_n . Ici la solution F est connue (étudiée en TS) : c'est la fonction « logarithme népérien » , notée ln par le tableur et les calculatrices scientifiques. On peut donc calculer l'ordonnée exacte des points d'abscisse x_n (colonne $ln(x_n)$) et l'erreur relative commise dans l'approximation.

Les formules apparaissent dans la copie d'écran ci-dessous :

	Α	В	С	D	Е	F
1	Pas h:	0,1				
2	n	<u>xn</u>	Υ _n	in(x _n)	Erreur absolue	Erreur relative
3	1	1	0	=LN(B3)	0	0,00%
4	=A3+1	=B3+B\$1	=C3+B\$1*1/(B3)	=LN(B4)	=D4-C4	=E4/D4
5	=A4+1	=B4+B\$1	=C4+B\$1*1/(B4)	=LN(B5)	=D5-C5	=E5/D5
6	=A5+1	=B5+B\$1	=C5+B\$1*1/(B5)	=LN(B6)	=D6-C6	=E6/D6
7	=A6+1	=B6+B\$1	=C6+B\$1*1/(B6)	=LN(B7)	=D7-C7	=E7/D7
8	=A7+1	=B7+B\$1	=C7+B\$1*1/(B7)	=LN(B8)	=D8-C8	=E8/D8
9	=A8+1	=B8+B\$1	=C8+B\$1*1/(B8)	=LN(B9)	=D9-C9	=E9/D9

Le fichier classeur open office correspondant est téléchargeable sur mon site. Le lien est : http://math.sicard.free.fr/1S/derivation/ln.ods .