1ère ST Devoir à la maison n° 6

Pour Mercredi 18 Décembre 1996

I) Étude d'un exemple:

Soient f, g et h, les fonctions définies sur IR par:

$$f(x) = x^2$$

$$g(x) = f(x) + 4$$

$$h(x) = f(x+5)$$

Dans un repère orthonormal (O, \vec{i}, \vec{j}) , C_f , C_g et C_h sont les courbes représentatives des fonctions f, g et h.

- 1) Donner les formules de calcul de g(x) et de h(x) en fonction de x.
- 2) Dessiner C_f , C_g et C_h dans le repère (O, \vec{i}, \vec{j}) . Prendre 1 cm comme unité.
- 3) Soit M d'abscisse t, tel que M \in C $_f$ et N d'abscisse t, tel que N \in C $_g$.

Montrer que \overrightarrow{MN} ne dépend pas de l'abscisse t de M et de N. En déduire que C_g est l'image de C_f par une transformation. Laquelle? Pourquoi?

4) Soit M d'abscisse t, tel que $M \in C_f$. Soit P d'abscisse (t–5), tel que $P \in C_h$. Quelle est l'ordonnée de P? Pourquoi?

Montrer que \overrightarrow{MP} est indépendant de t. En déduire que C_h est l'image de C_f par une transformation. Laquelle? Pourquoi?

II) Généralisation:

Soit f une fonction définie sur un sous-ensemble D de IR.

Soit C_f sa représentation graphique dans un repère orthonormal $(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j})$

k étant un nombre réel, on définit les fonctions:

- Pour $x \in \mathbb{R}$, a(x) = x+k.
- Pour $x \in D$, g(x) = a(f(x)) = f(x)+k.
- Pour réel x tel que $a(x) \in D$, h(x) = f(a(x)) = f(x+k).

<u>Notations</u>: $g = a \circ f$ et $h = f \circ a$ (Composées de deux fonctions).

 $C_g \text{ et } C_h \text{ sont les courbes représentatives des fonctions } g \text{ et } h \text{ dans le repère } (O, \vec{i}, \vec{j}) \,.$

- 1) Prouver que C_g est l'image de C_f par la translation de vecteur $k\stackrel{\rightarrow}{j}$.
- 2) Prouver que C_h est l'image de C_f par la translation de vecteur $-\vec{k}$ $\stackrel{\rightarrow}{i}$.

III) Application:

Soient f et g les fonctions définies par: $f(x) = \frac{1}{x}$ et $g(x) = \frac{3x-5}{x-2}$.

Dans un repère orthonormal (O, \vec{i}, \vec{j}) , C_f et C_g sont les courbes représentatives des fonctions f et g.

- 1) Sur quels ensembles les fonctions f et g sont-elles définies?
- 2) Montrer que, pour tout $x \ne 2$, on a: $g(x) = \frac{1}{x-2} + 3$.
- 3) Tracer C_f et C_g dans (O, \vec{i}, \vec{j}) . Prendre 1 cm pour unité.
- 4) En utilisant les résultats du II), (en composant f avec deux fonctions a et b à déterminer afin d'obtenir g), montrer que C_g est l'image de C_f par une translation de vecteur $\stackrel{\rightarrow}{v}$ à déterminer.