1èreST Devoir à la maison n°13

Pour Mercredi 19 Mars 1997

Configuration du problème:

Soit un repère orthonormal direct (O, i, j) et (C) le cercle trigonométrique associé à ce repère.

Placer les points A, B, C et D tels que: $\overrightarrow{OA} = \overrightarrow{i}$, $\overrightarrow{OD} = \overrightarrow{j}$, $\overrightarrow{OB} = -\overrightarrow{i}$ et $\overrightarrow{OC} = -\sqrt{3}$ \overrightarrow{j} : ABC est donc équilatéral.

Pour tout entier $n \ge 3$, on définit le point I_n par: $\overrightarrow{AI}_n = \overset{2}{-} \overrightarrow{AB}$.

La droite (CI_n) coupe le cercle (C) en deux points; celui qui n'appartient pas au segment [CI_n] est appelé E_n.

Vocabulaire:

Pour n entier supérieur à 2, un polygone régulier convexe à n côtés inscrit dans le cercle (C) est défini par une suite de n points consécutifs A_1 , A_2 , A_3 , \cdots , A_n situés sur le cercle (\mathbb{C}) et vérifiant:

et:
$$(\overrightarrow{OA}_1, \overrightarrow{OA}_2) = (\overrightarrow{OA}_2, \overrightarrow{OA}_3) = \cdots = (\overrightarrow{OA}_{n-1}, \overrightarrow{OA}_n) = (\overrightarrow{OA}_n, \overrightarrow{OA}_1) = \frac{2\pi}{n}$$

Un tel polygone sera noté (P_n) dans ce problème.

Problématique:

Certains prétendent que, pour tout entier $n \ge 3$, $AE_n = L_n$. Le but du problème est de voir si cette affirmation est vraie!

Étude du problème:

I) Réaliser la construction de E₃, E₄, E₅ et E₆.

II)

- 1) Déterminer une équation de la droite (CI_n).
- 2) En utilisant l'équation du cercle (C), montrer que l'abscisse de E_n est solution de l'équation du $2(n^{2}-2n+4)x^{2}-3n(n-4)x+(n-4)^{2}=0.$
 - 3) Résoudre cette équation dans les cas particuliers où n = 3, puis n = 4.

En déduire les coordonnées de E₃ et de E₄.

4) Démontrer que, pour tout entier $n \ge 5$, les coordonnées de E_n (x_n ;

$$x_{n} = \frac{(n-4)\left(3n + \sqrt{n^{2} + 16n - 32}\right)}{4(n^{2} - 2n + 4)} \qquad \text{et} \qquad y_{n} = \frac{\left(n\sqrt{n^{2} + 16n - 32} - (n-4)^{2}\right)\sqrt{3}}{4(n^{2} - 2n + 4)} \ .$$

- 5) Utiliser ces formules pour calculer les coordonnées de E₅ et E
- III) Soit $\alpha_n = (\vec{i}; \overrightarrow{OE}_n)$
 - 1) Exprimer x_n et y_n en fonction de α_n .

En déduire la mesure principale, en radians, des angles α_3 , α_4 et α_5 . Conclure que:

[AE₃] est le côté d'un triangle équilatéral inscrit dans (C).

[AE₄] est le côté d'un carré inscrit dans (C).

[AE₆] est le côté d'un hexagone régulier inscrit dans (C).

- 2) Montrer que la longueur des côtés de (P_n) est: $L_n = 2\sin\frac{\pi}{n}$. 3) Montrer que, pour tout entier $n \ge 3$, on a: $AE_n = \sqrt{2(1-x_n)}$.
- 4) En utilisant votre calculatrice programmable, évaluer L_n et AE_n pour les entiers n tels que: $3 \le n \le 12$, n = 50, n = 100, n = 200, n = 500 et n = 1000.
- 5) Vérifier que pour n = 3, n = 4 et n = 6, on retrouve bien les résultats du 1). Que penser de la comparaison de L_n avec AE_n pour les autres valeurs de n? Conclure!