Propriétés comparées des égalités et inégalités dans R

Dans les énoncés des propriétés ci-dessous, sauf précisions particulières, les lettres désignent des nombres réels quelconques.

<u>Égalités</u>	<u>Inégalités</u>
• L'égalité se lit dans les deux sens: elle est symétrique: $a=b$ équivaut à: $b=a$	• L'inégalité n'est pas symétrique, mais on a:
•L'égalité est transitive: Si les deux égalités: $a=b \ et \ b=c$ sont vraies alors, l'égalité $a=c$ est vraie	• L'inégalité est transitive: Si les deux égalités: $a < b \ et \ b < c$ sont vraies alors, l'égalité $a < c$ est vraie
On a alors trois écritures du même nombre. On se permet alors d'écrire: $a=b=c$	On peut donc ordonner les trois nombres. On se permet alors d'écrire: $a < b < c$.
• L'égalité est compatible avec l'addition et la soustraction:	• L'inégalité est compatible avec l'addition et la soustraction:
• Égalité et opposés: $a=b$ équivaut à: $(-a)=(-b)$	• Inégalité et opposés: $a < b$ équivaut à: $(-a) > (-b)$
• L'égalité est compatible avec la multiplication par un réel non nul: $a=b \ et \ c\neq 0 \qquad \text{équivaut à:} \qquad ac=bc \ et \ c\neq 0$	• L'inégalité est compatible avec la multiplication par un réel strictement positif: a <b c="" et="">0 équivaut à: ac<bc c="" et="">0</bc>
Attention: Si $c=0$, on a $ac=bc$ sans forcément avoir $a=b$	Attention: Si $a < b$ avec $c = 0$, on obtient: $ac = bc = 0$
	 Multiplication par un réel strictement négatif: a < b et c < 0 équivaut à: ac > bc et c < 0 Changement de sens de l'inégalité
• Égalité et inverses:	• Inégalité et inverses de réels strictement positifs :
$\boxed{a=b \ et \ a\neq 0 \ et \ b\neq 0} \text{\'equivaut \'a:}$ $\boxed{\frac{1}{a}=\frac{1}{b} \ et \ a\neq 0 \ et \ b\neq 0}$	$\boxed{0 < a < b \text{ 'équivaut à: } 0 < \frac{1}{b} < \frac{1}{a}}$ $> \underline{L'ordre\ est\ inversé!}$
• L'égalité est compatible avec la division par un réel non nul: $\boxed{a=b \ et \ c\neq 0} \text{équivaut à :} \boxed{\frac{a}{c} = \frac{b}{c} \ et \ c\neq 0}$	• L'inégalité est compatible avec la division par un réel strictement positif: $a < b \ et \ c > 0$ équivaut à: $\frac{a}{c} < \frac{b}{c} \ et \ c > 0$
Bien sûr, pas question de diviser par zéro!	•Division par un réel strictement négatif: $a < b \ et \ c < 0$ équivaut à: $\frac{a}{c} > \frac{b}{c} \ et \ c < 0$ —> Changement de sens de l'inégalité <—

	T
Addition membre à membre d'égalités:	Addition membre à membre d'inégalités:
Si $a=b$ et $c=d$ alors $a+c=b+d$ La réciproque est fausse	Si $a < b \text{ et } c < d$ alors $a + c < b + d$ La réciproque est fausse
• Soustraction membre à membre d'égalités: Si $a=b$ et $c=d$ alors $a-c=b-d$ La réciproque est fausse	Pour la soustraction, la propriété n'est plus vraie. En effet, si $a < b$ et $c < d$, on ne peut pas comparer $a-c$ et $b-d$. Cependant, sachant qu'alors $(-d)<(-c)$, on peut conclure que: $a-d < b-c$.
Multiplication membre à membre:	• Multiplication membre à membre d'inégalités de nombres strictement positifs :
Si $a=b$ et $c=d$ alors $ac=bd$	Si $0 < a < b \text{ et } 0 < c < d$ alors $0 < ac < bd$
La réciproque est fausse.	La réciproque est fausse.
Division membre à membre:	• Pas de propriété de division membre à membre, même pour les réels strictement positifs.
Si $a=b$ et $c=d$ et $c\neq 0$ et $d\neq 0$ alors: a_b	En effet, si $0 < a < b$ et $0 < c < d$,
$\frac{a}{c} = \frac{b}{d}$ La réciproque est fausse.	on ne peut pas comparer $\frac{a}{c}$ et $\frac{b}{d}$.
	Cependant, sachant qu'alors $0 < \frac{1}{d} < \frac{1}{c}$,
	on peut conclure que: $0 < \frac{a}{d} < \frac{b}{c}$.